Quantitative Analysis of Cell Proliferation and Differentiation in the Cortex of the Postnatal Mouse Cerebellum

نویسنده

  • Setsuya Fujita
چکیده

The generation cycle of germinative cells (external matrix cells) in the external granular layer of the cerebellar cortex of the 10-to 11-day-old mouse was studied by radioautography following repeated injections of H(3)-thymidine. The generation time is 19 hr, presynthetic time 8.5 hr, DNA-synthetic time 8 hr, postsynthetic time 2 hr, and mitotic time 0.5 hr. These proliferating cells occupy the outer half of the external granular layer and make up the external matrix layer. Neuroblasts are differentiated from the external matrix cell, migrate out from the layer and accumulate in the inner half of the external granular layer to form the external mantle layer. The transit time of the neuroblasts in the external mantle layer is 28 hr. Thereafter, they migrate farther into the molecular layer and the internal granular layer. By means of long-term cumulative labeling, the rate of daily production of neuroblasts from the external matrix cell is studied in quantitative terms. It becomes clear that the entire population of the inner granule neurons arises postnatally in the external granular layer between 1 and 18 days of age and that 95% of them is produced between postnatal days 4 and 15. Finally, the fate of the cells in the external granular layer at its terminal stage was studied by marking the cells with H(3)-thymidine during 15-16 days of life and following their subsequent migration and developmental changes up to 21 days of life. Comparison of radioautographs taken before and after the migration disclosed that the external matrix cells give rise to a small number of neuroglia cells. This finding revealed their multipotential nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Differentiation and Proliferation of Primordial Germ Cells in Culture

Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

The effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells

Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...

متن کامل

Quantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture

Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...

متن کامل

P50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation

In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 32  شماره 

صفحات  -

تاریخ انتشار 1967